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CHAPTER 1 FUNCTIONS

1.1 FUNCTIONS AND THEIR GRAPHS

10.

11.

12.

13.

14.

domain = (—ee, o0); range = [1,0) 2. domain =[0, e0); range = (—oo, 1]
domain =[-2,%); y in range and y = +/5x+10 > 0 = y can be any nonnegative real number = range =[0, o).

domain = (—eeo, 0]U[3, o0); y in range and y = Jx2=3x20= y can be any nonnegative real number =
range = [0, o).

ﬁ,nOWift<3:>3—t>0:>ﬁ

3-t<0=> & < 0= y can be any nonzero real number = range = (—oo, 0) U (0, o).

domain = (-0, 3) U (3, ); y in range and y = >0,orift>3=

2
?-16

2

,now ifr <—4=12~16>0= -
t_

domain = (—oo, —4) U (-4, 4) U (4,00); y in range and y = >0, or if

—4<t<4:>—16£t2—16<0:>—%2 2216,orift>4:>t2—16>0:> 2216>0:>ycanbeanynonzero
- -

real number = range = (—co, —%] U (0, o).

(a) Not the graph of a function of x since it fails the vertical line test.
(b) Is the graph of a function of x since any vertical line intersects the graph at most once.

(a) Not the graph of a function of x since it fails the vertical line test.
(b) Not the graph of a function of x since it fails the vertical line test.

2
base = x; (height)® + (£)” = % = height = 2 x area is a(x) = 1 (base)(height) = %(x)(%x) _ 32

perimeter is p(x) = x+x+x =3x.

2 d 1

+s2=d23s=—;andareaisa=s2:a=5d2

NG

s = side length = s

Let D = diagonal length of a face of the cube and / = the length of an edge. Then 0> +D? =d? and
32
) _d

=L

D? =20% = 3¢* =d* = ¢ =L The surface area is 6/% = % =2d? and the volume is /> = (ﬁ

NE 3
&

The coordinates of P are (x, Jx ) so the slope of the line joining P to the origin is m = -

Thus,(x,\/;) =(#,#)

=f(x > 0).

- =Lyt 30 =4J(x-0)7 _2_\/2_L i2_\/2L2_22
4y =5=y=-gx+3L=y(x-0)"+(y=0)" =\[x" +(-Fx+)" =[x +7x" —gx+
_|s2_ s +2_\/20x2—20x+25_\/20x2—20x+25
TNt T e T 16 = 7

yex=3 52+ 3= xL == 42 +(—0)2 =2 +3- 42 +y =2 1) + )7
=t -2 41?2yt P

Copyright © 2018 Pearson Education, Inc.
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2 Chapter 1 Functions

15. The domain is (—ee, o). 16. The domain is (—ee, o).

y y

3k

2

- ()=1-2x—-x"
f(n/x\z_

AN\ f@=5-2

4}
17. The domain is (—oe, o). 18. The domain is (—ee, 0].
NE
S(X)=\/: 2+
L
S R B
—1F
19. The domain is (—eo, 0) U (0, ). 20. The domain is (—ee, 0) U (0, o).
y G(t)
2 F(r)-ﬁ
1
EEEE g |
G(t)==
_i I
2
1
-3 -2 -1 1 2

21. The domain is (—eo, =5) U (=5, =3]U[3, 5) U (5, =) 22. The range is [2, 3).

23. Neither graph passes the vertical line test
@ | (b)

2+

4+

Copyright © 2018 Pearson Education, Inc.



Section 1.1 Functions and Their Graphs

24. Neither graph passes the vertical line test

y=1-x

@ v (b) ‘,
/ e+ Iyl \\
- Y‘»\_l
_NQii S II_N<< \\\\
i -1
-1
X+y
|x+y|—1(:) =
X+y——
25. 1|2 26. 0112
y 2
X, 0<x<1
1 0 ﬂn:{l—x, 1<x<2 y 1 0 0
1
I 7; I 5
-1
-x%, x<1 l x<0
27. F(x)= 28. G(x)=
X" +2x, x>1 x, 0<x
4\/_\’=X2+2,\ r3
- )
B 1
B 7? ﬁ% ﬁ} L L L
L1 1 L1 x 1 2 3 *
Z [ Fo1
r -2 1 <o
)=4_X2 - -3 ' x,0<x

29. (a) Line through (0, 0) and (1, 1): y = x; Line through (1, 1) and (2, 0): y =—x+2
x, 0<x<1
f(x)=

—x+2, 1<x<2

2, 0<x<l1

0, 1<x<2
®) f@=1) hcies

0, 3<x<4

30. (a) Line through (0,2)and (2,0): y=—x+2
Line through (2, 1) and (5, 0): m =

—x+2,0<x<2
Jx)= 2<x<5

5-

1

5
3)C+

3

Copyright © 2018 Pearson Education, Inc.
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31.

32.

33.

34.

35.

36.

Chapter 1 Functions

(b) Line through (=1, 0) and (0, =3): m = O‘f—(‘_‘f)
Line through (0, 3) and (2, -1): m = -3 _74 =-2,50 y=-2x+3

2-0
-3x-3, -1<x<0
f(x)=

=-3,s0y=-3x-3

—2x+3, 0<x<2

(a) Line through (-1,1) and (0, 0): y = —x
Line through (0, 1) and (1, 1): y =1

Line through (1, 1) and (3, 0): m=3 =3 =-L soy=-L(x-)+1=-Lx+3
-X -1<x<0
f(x)= 1 0<x<l1
~lyed 1<x<3 Ix  2<x<0
(b) Line through (-2, ~1) and (0, 0): y = Tx f(x)=1-2x+2 0<x<l
Line through (0, 2) and (1, 0): y =-2x+2 -1 l<x<3
Line through (1, -1) and (3, -1): y =—1
(a) Line throu h(l O)and(T D:m= 120 _2 5o =2(x—1)+0=;x—1
gz, M=y S SOV =T\ TS
0,0<x<T
S(x)= 5 T o<
?x—l, 7<X_T
4, 0<x<L
-4, L<x<T
(b) /()= .
A, TSX<T
—A, 3TTSxS2T

(@) |x]|=0forxe [0,1)

| x| =[x only when x is an integer.

(b) [x]=0for xe (-1,0]

For any real number x, n < x <n+1, where n is an integer. Now: n<x<n+1=-(n+1)<—x<-n.
By definition: [ —x |=—nand | x |=n= —| x | = —n. So[ —x | =—| x | for all real x.

To find f(x) you delete the decimal or 4
fractional portion of x, leaving only
the integer part. . L)
2 o—o0
1 *——o0
-3 -2 -? ? 3
o—=e -1
x], x>0
o—ae -2+ f(x)=
fxT, x<o
o0—=e -3

Copyright © 2018 Pearson Education, Inc.




37. Symmetric about the origin
Dec: —co < x < o0
Inc: nowhere

2

39. Symmetric about the origin
Dec: nowhere
Inc: —eo< x <0
O0<x<oo

41. Symmetric about the y-axis
Dec: =0 < x <0
Inc: 0Sx<oo

Section 1.1 Functions and Their Graphs

38. Symmetric about the y-axis
Dec: —o<x <0
Inc:0<x<oo

40. Symmetric about the y-axis
Dec: 0 <x <o
Inc: —0o<x <0

) 2

42. No symmetry
Dec: —e0o < x <0
Inc: nowhere

-1

Copyright © 2018 Pearson Education, Inc.
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43.

45.

47.

48.

49.

50.

51,

52.

53.

54.

55.

Chapter 1 Functions

Symmetric about the origin 44. No symmetry
Dec: nowhere Dec:0<x <0
Inc: —e0 < x < o0 Inc: nowhere
y y
) .18 )

X
f_l‘l/T 1 2 -2
-1
-4

y=-4/x
-6
-8
No symmetry 46. Symmetric about the y-axis
Dec: 0< x < oo Dec: o< x<0
Inc: nowhere Inc: 0Sx<oo
y y
4 =
3k
2 ~
y=(n??
i
1 1 1 1 1 1 1 1 x
8642 | 246 8

Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the
origin, the function is even.

f@=2 = Land (=)= (07 = L= -(%) = — f(x). Thus the function is odd.
X —X X

Since f(x)= P tl= (—x)2 + 1= f(—x). The function is even.

Since [ £(x) = x> + x] #[ f(=x) = (=x)> —=x] and [ £ (x) = x + x] # [~ £ (x) = —(x)* — x] the function is neither
even nor odd.

3

Since g(x) = x> + x, g(—x) = —x> — x = (x> + x) = —g(x). So the function is odd.

g(x)=x*+3x% = 1= (—x)* + 3(—x)? = 1 = g(x), thus the function is even.

L —__ L — o(—x). Thus the function is even.

)= 1 (—x)’-1

x2

g(x) == g(-x)=- xzx_ .= —g(x). So the function is odd.

2
¥-1

h(t) = t—il; h(-t) = 1_ T~ h(t) = 1# Since A(t) # —h(t) and h(¢) # h(—t), the function is neither even nor odd.

—t -t

Copyright © 2018 Pearson Education, Inc.



56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Section 1.1 Functions and Their Graphs

Since |t3| = |(—t)3 |, A(¢) = h(—t) and the function is even.

h(t)=2t+ 1, h(=t) = =2t + 1. So h(t) # h(=t). —h(t) = =2t -1, so h(t) # —h(¢). The function is neither even

nor odd.

h(t) =2|t|+ 1and h(—t) = 2|—t| + 1 =2|¢| + 1. So h(¢) = h(—t) and the function is even.
g(x) =sin2x; g(—x) = —sin2x = —g(x). So the function is odd.

g(x)=sin x2; g(—=x)=sin X2 = 2(x). So the function is even.

2(x) =cos3x; g(—x) =cos3x = g(x). So the function is even.

g(x)=1+cosx; g(—x) =1+cosx = g(x). So the function is even.
s=kt=25=k(75)=>k=1=5=11,60=11=1=180

K =cv? =12960 = ¢(18)> = ¢ =40 = K = 40v?; K = 40(10)> = 4000 joules

k

N

12

r=bo6=kok=24=,r=210=28=,=-12
s s 5

—_k _ _k — — 14700 . — 14700 — 24500 03
P—7:>14.7—m:k—147003P—T,23.4—T:>V—T~628.21n

V= f(x)=x(14-2x)(22 - 2x) = 4x> - 72x> + 308x; 0 < x < 7.

) 2 N
(a) Let & = height of the triangle. Since the triangle is isosceles, (AB) + (AB) =22 = 4B =+/2. So,

2. 42 2 : . .
h™+1 =(x/§) = h=1= Bisat(0,1) = slope of AB =—-1=> The equation of 4B is
y=f(x)==x+1;x€[0,1].

(b) A(x)=2xy=2x(—x+1)= 2% + 2x; x€ [0, 1].

(a) Graph & because it is an even function and rises less rapidly than does Graph g.
(b) Graph f because it is an odd function.
(c) Graph g because it is an even function and rises more rapidly than does Graph 4.

(a) Graph f because it is linear.

(b) Graph g because it contains (0, 1).
(c) Graph & because it is a nonlinear odd function.

Copyright © 2018 Pearson Education, Inc.



