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Chapter 2 
 
 
 
 
 2.1 
 
 

a) Overall mass balance: 
 

 321
)( www

dt
Vd

−+=
ρ  (1) 

 
Energy balance: 
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  Because ρ = constant and  VV = = constant, Eq. 1 becomes: 
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b) From Eq. 2, substituting Eq. 3 
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Constants C and Tref  can be cancelled: 
 

 3212211
3 )( TwwTwTw

dt
dTV +−+=ρ  (5) 

 
The simplified model now consists only of Eq. 5. 
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Degrees of freedom for the simplified model: 
 

Parameters : ρ, V  
 
Variables : w1, w2, T1, T2, T3 
NE = 1 
NV = 5 

 
Thus, NF = 5 – 1 = 4 
 
Because w1, w2, T1 and T2 are determined by upstream units, we assume 
they are known functions of time: 
 
  w1 = w1(t) 

w2 = w2 (t)  
T1  = T1(t) 
T2  = T2(t) 

 
Thus, NF is reduced to 0. 
 
 

 
 2.2   
 
 
 Energy balance: 
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Simplifying 
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b)       T increases if Ti increases and vice versa. 
 

T decreases if w increases and vice versa if (Ti – T) < 0. In other words, if 
Q > UAs(T-Ta), the contents are heated, and T >Ti. 
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 2.3 
 
 

a) Mass Balances: 
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Flow relations: 
 
 Let P1 be the pressure at the bottom of tank 1. 
 
 Let P2 be the pressure at the bottom of tank 2. 
 
 Let Pa be the ambient pressure. 
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b) Seven parameters: ρ, A1, A2, g, gc, R2, R3 

 
Five variables : h1, h2, w1, w2, w3 
  
Four equations 
 
Thus NF = 5 – 4 = 1 
 
         1 input = w1 (specified function of time) 
         4 outputs = h1, h2, w2, w3 
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 2.4 
 
 

Assume constant liquid density, ρ . The mass balance for the tank is 
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Because ρ, A, and mg are constant, this equation becomes 
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The square-root relationship for flow through the control valve is 
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From the ideal gas law, 
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where T is the absolute temperature of the gas. 

 
Equation 1 gives the unsteady-state model upon substitution of q from Eq. 2 and 
of Pg from Eq. 3: 
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Because the model contains Pa, operation of the system is not independent of Pa. 
For an open system Pg = Pa and Eq. 2 shows that the system is independent of Pa. 
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 2.5 
 
 
 a)            For linear valve flow characteristics,  
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Mass balances for the surge tanks 
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where m1 and m2 are the masses of gas in surge tanks 1 and 2, 
respectively. 

 
If the ideal gas law holds, then 
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where  M is the molecular weight of the gas 

   T1 and T2 are the temperatures in the surge tanks. 
 

Substituting for m1 and m2 from Eq. 3 into Eq. 2, and noticing that V1, T1, 
V2, and T2 are constant, 
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The dynamic model consists of Eqs. 1 and 4. 
 

       b) For adiabatic operation, Eq. 3 is replaced by 
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Substituting Eq. 6 into Eq. 2 gives,  
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as the new dynamic model. If the ideal gas law were not valid, one would 
use an appropriate equation of state instead of Eq. 3. 
 
 
 
 

 
 
 2.6 
 
 

a) Assumptions: 
 

1.  Each compartment is perfectly mixed. 
2.  ρ and C are constant. 
3.  No heat losses to ambient. 

 
  Compartment 1: 
  Overall balance (No accumulation of mass): 
 

 0 = ρq − ρq1       thus       q1 = q (1) 
 
  Energy balance (No change in volume): 
 

 1
1 1 1 2ρ ρ ( ) ( )i

dTV C qC T T UA T T
dt

= − − −  (2) 

 
  Compartment 2: 
 
  Overall balance: 
 

 0 = ρq1 − ρq2       thus       q2 = q1= q (3) 
 
  Energy balance: 
 

 2
2 1 2 1 2 2ρ ρ ( ) ( ) ( )c c c
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= − + − − −  (4) 

 
b) Eight parameters: ρ, V1, V2, C, U, A, Uc, Ac 

Five variables: Ti, T1, T2, q, Tc 
Two equations: (2) and (4) 
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Thus NF = 5 – 2 = 3 
 
          2 outputs = T1, T2 
          3 inputs = Ti, Tc, q (specify as functions of t) 

 
 

c) Three new variables: ci, c1, c2  (concentration of species A). 
Two new equations: Component material balances on each compartment. 
c1 and c2 are new outputs. ci must be a known function of time. 

 
 
 
 2.7 

 
 

As in Section 2.4.2, there are two equations for this system: 
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Results: 

  
(a) Since w  is determined by hydrostatic forces, we can substitute for this 

variable in terms of the tank volume as in Section 2.4.5 case 3. 
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This leaves us with the following: 
   
 5 variables: , , , ,i iV T w T Q  
 4 parameters: , , ,vC C Aρ  

2 equations 
 
The degrees of freedom are 5 2 3− = . To make sure the system is specified, we 
have: 
  
 2 output variables: ,T V  
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 2 manipulated variables: , iQ w  
 1 disturbance variable: iT  
 
(b) In this part, two controllers have been added to the system. Each controller 

provides an additional equation. Also, the flow out of the tank is now a 
manipulated variable being adjusted by the controller. So, we have 

 
4 parameters: , , ,sp spC T Vρ  
6 variables: , , , , ,i iV T w T Q w  
4 equations 

 
The degrees of freedom are 6 4 2− = . To specify the two degrees of freedom, we 
set the variables as follows: 

   
  2 output variables: ,T V  
  2 manipulated variables (determined by controller equations): ,Q w  
  2 disturbance variables: ,i iT w  

 
 

 2.8 
 
 

Additional assumptions: 
 

 (i)  Density of the liquid, ρ, and density of the coolant, ρJ, are constant. 
 (ii) Specific heat of the liquid, C, and of the coolant, CJ, are constant. 

 
Because V is constant, the mass balance for the tank is: 

  

 0=−=ρ qq
dt
dV

F ;  thus q = qF 

 
Energy balance for tank: 
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Energy balance for the jacket: 
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where A is the heat transfer area (in ft2) between the process liquid and the 
coolant. 
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Eqs.1 and 2 comprise the dynamic model for the system. 

 
 
 
 
 2.9 
 
 

Assume that the feed contains only A and B, and no C. Component balances for 
A, B, C over the reactor give. 
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An overall mass balance over the jacket indicates that qc = qci because the volume 
of coolant in jacket and the density of coolant are constant. 

 
Energy balance for the reactor: 
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where  MA, MB, MC are molecular weights of A, B, and C, respectively 
   SA, SB, SC are specific heats of A, B, and C. 
   U is the overall heat transfer coefficient 
   A is the surface area of heat transfer 
 

Energy balance for the jacket: 
 

 ρ ρ ( ) ( )c
j j j j j ci ci c c

dTS V S q T T UA T T
dt

= − + −  (5) 

where:   
 ρj, Sj   are density and specific heat of the coolant. 

               Vj        is the volume of coolant in the jacket. 
 

Eqs. 1 - 5 represent the dynamic model for the system. 
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 2.10 
 

 The plots should look as shown below: 

   

 

 

Notice that the functions are only good for t = 0 to t = 18, at which point the tank 
is completely drained.  The concentration function blows up because the volume 
function is negative. 


