Chapter 2
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b)

Overall mass balance:

d(pV)

at =W, +W, —W,

Energy balance:

APV -To)]

dt = W1C (r1 _Tref ) + ch (Tz _Tref )

_W3C (T3 _Tref )

Because p = constant and V =V = constant, Eq. 1 becomes:
W, =W, + W,
From Eqg. 2, substituting Eq. 3

—d(T,-T,) _—dT
pCV # =pCV d_t3 =WC(T, =T,y ) +W,C(T, ~ T, )

—(w,+w,)C (Ts — Tt )

Constants C and T, can be cancelled:
—dT,
pV F =wW,T, + W, T, — (W, +W,)T,

The simplified model now consists only of Eq. 5.
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Degrees of freedom for the simplified model:

Parameters : p, V

Variables : wq, wy, T1, To, T3
NE =1
NV =5

Thus, Ne=5-1=4

Because w1, Wy, T1 and T, are determined by upstream units, we assume
they are known functions of time:

w1 = wi(t)
Wo =Ws (t)
Ty =Ty(t)
Tz = Tz(t)

Thus, Ng is reduced to 0.

Energy balance:

b)

. dpV (T -T,)]

=WC, (T, - T, )-WC,(T T, )-UA(T-T,)+Q

P dt
Simplifying
pVCpZ—I:WCpTi —WCpT -UAT-T,)+Q
PVC, S =WC, (T, ~T)-UA T -T,)+Q

T increases if T; increases and vice versa.

T decreases if w increases and vice versa if (Ti — T) <0. In other words, if
Q > UA((T-Ty), the contents are heated, and T >T;.
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b)

Mass Balances:

dh
PA dtl =W, —W, =W, (1)
dh
" @

Flow relations:
Let P, be the pressure at the bottom of tank 1.
Let P, be the pressure at the bottom of tank 2.

Let P, be the ambient pressure.

Then w, = PlF; P _ gpi (h.—h,) 3)
2 c' ‘2
W3= Pl_Pa — pg h]_ (4)
R3 gcRS

Seven parameters: p, A1, Az, 0, Je, R2, R3
Five variables : hy, hy, wi, wy, ws

Four equations

ThusNe=5-4=1

1 input = w; (specified function of time)
4 outputs = hy, hy, Wy, ws
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Assume constant liquid density, p . The mass balance for the tank is

d(pAh+m,)

at =p(0; —q)

Because p, A, and mgare constant, this equation becomes

The square-root relationship for flow through the control valve is

1/2
q=c{g+ﬂﬂ—aJ )

From the ideal gas law,

_(my /M)RT

"7 A(H-h) ®)

where T is the absolute temperature of the gas.

Equation 1 gives the unsteady-state model upon substitution of q from Eqg. 2 and
of Py from Eq. 3:

1/2

Pa (4)

dh (mg /M)RT  pgh
A—=0; =C, + -
dt A(H —h) dc

Because the model contains P,, operation of the system is not independent of Ps.
For an open system Py = P, and Eq. 2 shows that the system is independent of P,.
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a)

b)

For linear valve flow characteristics,

W, = ,W, = , W, = @)

dm
—w, —W,, dt2 =W, —W, )

where m; and m, are the masses of gas in surge tanks 1 and 2,
respectively.

If the ideal gas law holds, then

m m
PV, = RT,, PV, = ZRT, ©

where M is the molecular weight of the gas
T, and T, are the temperatures in the surge tanks.

Substituting for m; and m, from Eqg. 3 into Eq. 2, and noticing that Vy, Ty,
V5, and T, are constant,

ME=Wa—wb and VoM di=wb—w (4)
RT, dt RT, dt

The dynamic model consists of Egs. 1 and 4.

For adiabatic operation, Eq. 3 is replaced by

v Y
p{ﬁ} _ pZ(V_ZJ = C, aconstant 5)
m, m,
Py, ) VAR
or ml :[ 1C1 ] and m2 :( ZCZ J (6)

Substituting Eqg. 6 into Eq. 2 gives,

1/y
l (EJ Pl(liy)/y ﬂ = Wa - Wb
dt
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b)

v 1/y
1 [VLJ P2(1—Y)/Y di — Wb _ WC
y | C dt

as the new dynamic model. If the ideal gas law were not valid, one would

use an appropriate equation of state instead of Eq. 3.

Assumptions:

1. Each compartment is perfectly mixed.
2. p and C are constant.
3. No heat losses to ambient.

Compartment 1:
Overall balance (No accumulation of mass):

O=pg-pgr thus g1=q

Energy balance (No change in volume):
dmy
VipC e pqC(T; —=Tp) —UA(T; —Ty)

Compartment 2:

Overall balance:

0=pai—-po2 thus G2=0:=q
Energy balance:

dT.
2 = pC(T;—T,) +UAT, —T,) U A (T, = T¢)

V,pC —=
2P at

Eight parameters: p, Vi, V2, C, U, A, U, Ac
Five variables: T, Ty, T2, q, T¢
Two equations: (2) and (4)
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c)

ThusNg=5-2=3

2 outputs =Ty, T»
3 inputs = T;, T, q (specify as functions of t)

Three new variables: c;, ¢1, ¢, (concentration of species A).
Two new equations: Component material balances on each compartment.
c1 and ¢, are new outputs. ¢; must be a known function of time.

As in Section 2.4.2, there are two equations for this system:

Results:

dv. 1

—=—(W—-w
” p(. )
dl:ﬂ(Ti_T)Jr&
dt Vp pVC

(@) Since w is determined by hydrostatic forces, we can substitute for this
variable in terms of the tank volume as in Section 2.4.5 case 3.

d_Vzl[Wi ¢, \ﬁj
dad  p A

d_T :ﬂ(Ti —T)+&
dt  pV pVC

This leaves us with the following:

5variables: V,T,w,,T,,Q

4 parameters: C, p,C,, A
2 equations

The degrees of freedom are 5—2 =3. To make sure the system is specified, we

have:

2 output variables: T,V
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2 manipulated variables: Q,w,
1 disturbance variable: T,

(b) In this part, two controllers have been added to the system. Each controller
provides an additional equation. Also, the flow out of the tank is now a
manipulated variable being adjusted by the controller. So, we have

4 parameters: C, p, T,V

sp? Vsp
6 variables: V,T,w,,T,,Q,w
4 equations

The degrees of freedom are 6—4=2. To specify the two degrees of freedom, we
set the variables as follows:

2 output variables: T,V
2 manipulated variables (determined by controller equations): Q,w
2 disturbance variables: T,,w,

Additional assumptions:

(i) Density of the liquid, p, and density of the coolant, p;, are constant.
(ii) Specific heat of the liquid, C, and of the coolant, C;, are constant.

Because V is constant, the mass balance for the tank is:

p%—\:qu —-q=0; thusq=0qr
Energy balance for tank:

PVCS = 4:pC (T, ~T) - Ko, AT -T,) @)
Energy balance for the jacket:

dT
pJVJCJd_tJ =0,p,C, (T, _TJ)+KqJO.8A(T -T,) (2)

where A is the heat transfer area (in ft?) between the process liquid and the
coolant.
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Egs.1 and 2 comprise the dynamic model for the system.

Assume that the feed contains only A and B, and no C. Component balances for
A, B, C over the reactor give.

dc _
v d_tA = gicai —qca —Vke =RTcy 1)
dc _ _
Vd_tB:quBi —qcg +V (ke 5/ RTe, —kpe %/ RTeg) 2)
dcc ~E,/RT
Vv o =—qcc +Vk,e ' " cg (3)

An overall mass balance over the jacket indicates that g. = ¢ because the volume
of coolant in jacket and the density of coolant are constant.

Energy balance for the reactor:

d| (VcaM 2Sp +VCrMeSgr +VC-M~S- )T
[( AZATA BdtB ° SR C) ]=(QiCAiMASA+QiCBiMBSB)(Ti -T)

—UA(T —T,) + (~AH Vke 5/ RTc, + (~AH, ke &/ RTcg 4)

where Ma, Mg, Mc are molecular weights of A, B, and C, respectively
Sa, Sg, Sc are specific heats of A, B, and C.
U is the overall heat transfer coefficient
A is the surface area of heat transfer

Energy balance for the jacket:
dT,
ijjVjF:ijjqci(Tci_Tc)+UA(T i) (5)
where:

pj, Sj are density and specific heat of the coolant.
Vi is the volume of coolant in the jacket.

Egs. 1 - 5 represent the dynamic model for the system.
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2.10

The plots should look as shown below:
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Notice that the functions are only good for t = 0 to t = 18, at which point the tank
is completely drained. The concentration function blows up because the volume
function is negative.
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