
Introduction to Statistical Physics

Solution Manual

Kerson Huang



ii



Chapter 1

1.1
Mass of water =106g, temperature raised by 20◦C.
Heat needed Q = 2× 107cal = 8.37×107J.=23.2 kwh.
Work needed = mgh = 14×150×29000 = 6.09×107 ft-lb =22.9 kwh.

1.2
Work done along various paths are as follows
ab: Z b

a

PdV = NkBT1

Z b

a

dV

V
= NkBT1 ln

Vb
Va

cd:

Pd(Vd − Vb) = NkBT3

µ
1− Vb

Vd

¶
de:

NkBT3

Z e

d

dV

V
= NkBT3 ln

Va
Vd

No work is done along bc and ea. The total work done is the sum of the
above. Heat absorbed equals total work done, since internal energy is unchanged
in a closed cycle.

1.3
(a)

α =
1

V

∂V

∂T
=

bV0T
b−1

T b
0V

(b)

∆V =
bV0T

b−1

T b
0

∆T

P =
NkBT

V
=

NkBT
b
0

V0
T 1−b

Work done = P∆V = bNkB∆T
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1.4

Consider an element of the column of gas, of unit cross section, and height
between z and z+dz. The weight of the element is −gdM , where dM is the mass
of the element: dM = mndz, where m is the molecular mass, and n = P/kBT
is the local density, with P the pressure. For equilibrium, the weight must
equal the pressure differential: dP = −gdM .Thus, dP/P = −(mg/kBT )dz. At
constant T , we have dp/P = dn/n.Therefore

n(z) = n(0)e−mgz/kBT

1.5

No change in internal energy, and no work is done. Therefore total heat
absorbed ∆Q = ∆Q1+∆Q2 = 0. That is, heat just pass from one body to the
other. Suppose the final temperature is T . Then

∆Q1 = C1(T − T1), ∆Q2 = C2(T − T2). Therefore

T =
C1T1 + C2T2
C1 + C2

1.6

Work done by the system is − R HdM . Thus the work on the system isZ
HdM =

κ

T

Z
HdH =

κH2

2T

1.7

Consider the hysteresis cycle in the sense indicated in Fig.1.6. Solve for the
magnetic field:

H = ±H0 + tanh
−1(M/M0)

( + for lower branch, − for upper branch.). UsingW = − R HdM , we obtain

W = −
Z M0

−M0

dM [H0 + tanh
−1(M/M0)]−

Z −M0

M0

dM [−H0 + tanh
−1(M/M0)]

= −4M0H0

1.8
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A log log plot of mass vs. A is shown in the following graph. The dashed
line is a straightline for reference.
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Chapter 2

2.1
Use the dQ equation with P, T as independent variables:
dQ = CPdT + [(∂U/∂P )T + P (∂V/∂P )T ]dP
For an ideal gas (∂U/∂P )T = 0, P (∂V/∂P )T = −V. Thus
dQ = CPdT − V dP.
The heat capacity is given by
C = CP − V (∂P/∂T )path.
The path is P = aV b, or equivalently P b+1 = a(NkBT )

b by the equation of
state. Hence

V (∂P/∂T )path = [ab/(b+ 1)]V (NkBT )
bT−1 = bNkB/(b+ 1). Therefore

C = CP − b

b+ 1
NkB

This correctly reduces to CP for b = 0.

2.2
Use a Carnot engine to extracted energy from 1 gram of water between 300

K and 290 K.
Max efficiency η = 1− (290/300) = 1/30.

W = ηC∆T =
1

30
(4.164 J g−1K−1 × 1 g× 10 K) = 1.39 J

Gravitational potential energy = 1 g× 9.8 kg s−2 × 110 m = 1.08 J

2.3
The highest and lowest available temperatures are, 600 F = 588.7 K and 70

F = 294.3 K.
The efficiency of the power plant is W/Q1 = 0.6[1− (294.3/588.7)] = 0.3.
In one second: W = 106 J.
So Q2 = 2.33× 106 J = CV∆T . Use CV = 4.184 J g

−1K−1,

5
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Flow rate = 6000 ×(0.305m)3

∆T =
2.33× 106 J

(4.184 J g−1K−2)6000(0.305 m)3 106 cm2/m3
= 3.27× 10−3K

2.4
(a)
Since water is incompressible, a unit mass input gives a unit mass output.
The net heat supplied per unit mass is ∆Q = C(T1 − T )− C(T − T2),
where C is the specific heat of water (per unit mass.) In steady state v2/2 =

∆Q. This gives
v =

p
2∆Q =

p
2C(T1 + T2 − 2T )

(b)
The entropy depends on the temperature like lnT . A unit volume of water

from each of the input streams has total entropy lnT1 + lnT2 This makes two
unit volumes in the output stream, with entropy 2 lnT . Therefore the change
in entropy is ln

¡
T 2/T1T2

¢ ≥ 0. Thus T ≥ √T1T2, and
vmax =

√
2C
¯̄̄p

T1 −
p
T2

¯̄̄

2.5
(a)
PV γ

1 = 2P0V
γ
0 , PV

γ
2 = 2\P0V γ

0

(V1/V2)
γ = 2.

£
(L̄+ a)/(L− a)

¤γ
= 2.

a

L
=
21/γ − 1
21/γ + 1

(b)
∆U = ∆Q−W , ∆Q = 0.
CV ∆T = −W , ∆T = −W/CV .
T1 = 2T0 +∆T = 2T0 − (W/CV ), T2 = T0 −∆T = T0 + (W/CV ).

P =
RT1
V1

=
R [2T0 − (W/CV )]

A (L+ a)

(c)
W = A

R a
0
dx(P1 − P2)

P1 = 2P0V
γ
0 / [A(L+ x)]

γ
, P2 = P0V

γ
0 / [A(L− x)]

γ
.

W =
P0V0
γ − 1

³
1− a

L−γ
´µ
1− 2a

L

¶
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2.6
(a)
PV = U/3, U = σV T 4.
P = σT 4/3.
dS = dQ/T = (dU + PdV )/T.
Integrate along paths with T=const, V=const.

S =
4

3
σV T 3.

(b)
S =Constant. ∴ T 3 ∼ V −1. Thus

T ∼ R−1

2.7
The heat absorbed by an ideal gas in an isothermal process is

∆Q = NkT ln(Vf/Vi)

where Vf and Vi are respectively the final and initial volume.The temperature
T in this formula is the ideal-gas temperature.
Draw a Carnot cycle on the PV diagram, and label the corners 1234 clock-

wise from the upper left.
The heat absorbed at the upper temperature T2, and the heat rejected at

the lower temperature T1, are
Q2 = NkT2 ln(V2/V1)
Q1 = NkT1 ln(V3/V4)
Because 23 and 12 lie on adiabatic lines, we have
V2T

γ−1
2 = V3T

γ−1
1

V1T
γ−1
2 = V4T

γ−1
1

Dividing one equation by the other yields V2/V1 = V3/V4.
The efficiency of the cycle is therefore

η = 1− Q1
Q2

= 1− T1
T2

2.8
Diesel cycle:
Q2 = CP (T3 − T2)
Q1 = CV (T4 − T1)
η = 1− (Q1/Q2) = 1− γ−1[(T4 − T1)/(T3 − T2)]
We have P3 = P2, hence
T3/T2 = V3/V2 = rc
The processes 12 and 34 are adiabatic, with TV γ−1 = constant. V4 = V1.
Thus
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T3V
γ−1
3 = T4V

γ−1
1

T2V
γ−1
2 = T1V

γ−1
1

Using the three relations derived, we obtain

η = 1− 1
γ

rγc − 1
rγ−1(rc − 1)

2.9
Otto cycle:
Q2 = CV (T3 − T2)
Q1 = CV (T4 − T1)
η = 1− (Q1/Q2) = 1− [(T4 − T1)/(T3 − T2)]
The processes 12 and 34 are adiabatic, with TV γ−1 = constant. We have

V4 = V1, V3 = V2 Thus
T1V

γ−1
1 = T2V

γ−1
2 .

T3V
γ−1
2 = T4V

γ−1
1 .

Taking the ratio of these equations, we have
T2/T1 = T3/T4 = rγ−1.
Thus

η = 1− r1−γ

2.10
First note Tb/Ta = Vb/Va = 2.

Work done Heat absorbed
a→b Pa(Vb − Va) = PaVa = NkTa CP∆T = CPTa
b→c 0 −CV Ta
c→a − R PdV = −NkTa ln 2 −NkTa ln 2

W (Net work done) = NkTa(1− ln 2)
Q2 (Heat absorbed) = CPTa =

5
2NkTa

η =
W

Q2
=
2

5
(1− ln 2) = 0.12

In comparison, ηCarnot = 1− (Tb/Ta) = 0.5.

2.11
First note T2 = 4T1. The P, V, T for the points A,B,C,D are as follows:

P V T
A P1 V1 = NkT1/P1 T1
B 2P1 2V1 4T1
C 2P1 V1 2T1
D P1 2V1 2T1
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(a)
Heat supplied along
ACB : CV T1 + CP (2T1) =

¡
3
2 + 5

¢
NkBT1 =

13
2 NkBT1.

ADB : CPT1 + CV (2T1) =
¡
5
2 + 3

¢
NkBT1 =

11
2 NkBT1.

AB : ∆U +∆W = 3
2NkB(2T1) +

3
2P1V1 = 6NkBT1.

(b)
Heat capacity = ∆Q/∆T = 6NkBT1/3T1 = 2NkB.
(c)
Work done = P1V1 = NkBT1. Heat absorbed = Heat absorbed along ACB

= (13/2)NkBT1.

η =
2

13

2.12
(a)
Since no work is being done, and the temperatures diverge, heat must be

transferred from the colder body to the hotter body, with no other effect, and
this violates the Clausius statement of the second law.
(b)
The assertion is not true for physical black bodies, because they cannot be

point-like but have finite size. Even if the two bodies have identical shapes,
their optical images are not reciprocal. That is, the radiation from one body
may form an image that is larger than the other body, and thus not completely
absorbed by the other body.
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Chapter 3

3.1
(a)
For a adiabatic process dS = 0, and the TdS equations give
CV dT = −(αT/κT )dV
CPdT = αTV dP
Dividing one by the other, we obtain
CP /CV = κT [−V (∂P/∂V )S ] = κT /κS
(b)
CV dT + (αT/κT )dV = CPdT − αTV dPT. Put
dT = (∂T/∂P )V dP + (∂T/∂V )PdV .
Equate the coefficients of dP and dV on both sides. One of them gives
CP − CV = (αTV/κT )(∂V/∂T )P = α2TV/κT .
(c)
Using U = A+ TS, H = G+ TS (enthalpy), we have

CV = (∂U/∂T )V = (∂A/∂T )V + S + T (∂S/∂T )V = T (∂S/∂T )V

= −T (∂2A/∂T 2)V

CP = (∂H/∂T )P = (∂G/∂T )P + S + T (∂S/∂T )P = T (∂S/∂T )P

= −T (∂2G/∂T 2)P

3.2
The Sacker-Tetrode equation is
S = NkB[(5/2)− ln(nλ3)], where n = N/V , and λ =

p
2π~2/mkBT .

(a)
A = U − TS = (3/2 /)kBT − TS = NkBT ln(nλ

3)−NkBT.
G = A+ PV = NkBT ln(nλ

3).
(b)
Write ln(nλ3) = lnn+ lnλ3. The second term is a function of T only.
µ = (∂A/∂N)V,T = kBT ln(nλ

3)+NkBT (∂ lnn/∂N)V,T−kBT = kBT ln(nλ
3).

µ = (∂G/∂N)P,T = kBT ln(nλ
3) +NkBT (∂ lnn/∂N)P,T = kBT ln(nλ

3).

11
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3.3
The force on the bead is (P − Pa)A−mg, where
P = pressure in gas,
Pa = 1 atm.
The equation of motion for the displacement x is mẍ =(P − Pa)A−mg.
In equilibrium the pressure in the gas is P0 = Pa + (mg/A).
The volume is V0 = RT/P0.
Assume adiabatic oscillations: PV γ = const.
This implies dP = −γ(P/V )dV ≈ −γ(P0/V0)Ax.
P = P0 + dP ≈ P0 − γ(P0/V0)Ax.
Thus mẍ+

¡
γA2P 20 /RT

¢
x = 0.

The frequency of oscillations is

ω = AP0
p
γ/RT

3.4
Let the equilibrium pressure and temperature be P0, T0. Under an in-

finitesimal displacement x, suppose the pressure of compartment 1 changes by
dP . Since the process is adiabatic, we have PV γ = constant, or (dP/P ) +
γ(dV/V ) = 0. In terms of the temperature, we have TV γ−1 = constant, or
(dT/T ) + (γ − 1)(dV/V ) = 0.
(a)
For compartment 1, we have to first order

dP = −γP0x
L

dT = −(γ − 1)T0x
L

For compartment 2, replace x by −x.
(b)
The force acting on the piston is dF = AdP . The equation of motion for x

is dF = Mẍ, where M is the mass of the piston. Thus ẍ+ (γAP0/ML)x = 0,
and the frequency of small oscillations is

ω =
p
γAP0/ML

(c)
Due to the finite thermal conductivity of the piston, heat flows back and

forth between the two compartment, because of the oscillation in the temper-
ature difference.Assume that the temperatures change so slowly that at any
moment we regard heat conduction as taking place between two heat reservoirs
of fixed temperatures. When an amount of heat dQ flows from 1 to 2, the
entropy increase is dS = (dQ/T2)− (dQ/T1). Thus

dS

dt
=

µ
1

T2
− 1

T1

¶
dQ

dt
=

kB(∆T )
2

T1T2
≈ kB

µ
∆T

T0

¶2
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The temperature difference is

(∆T )2 = (T1 − T2)
2 = (2dT )2 =

4(γ − 1)2T 20 x2
L2

Hence
dS

dt
= ax2

where a = 4kB(γ − 1)2/L2.
(d)
Energy dissipation, which has so far been ignored, occurs at the rate T0dS/dt =

aT0x
2. The time average of this rate is 1

2aT0x
2
0, where x0 is the amplitude of

oscillation. The energy of oscillation is E = 1
2Mω2x20. In one period of oscil-

lation, the energy dissipated is ∆E = (2π/ω) 12aT0x
2
0. This gives a fractional

dissipation per cycle
∆E

E
=
2πT0
aMω3

3.5
(a)

P = −
µ
∂A

∂V

¶
T

= a0(v0 − v)

(b)
κT = −v−1(∂v/∂P )T = (a0v)−1
α = v−1(∂v/∂T )P = −v−1(∂P/∂T )V (∂v/∂P )T , by chain rule.

α =
1

a0v

da0
dT

(c)

µ =

µ
∂A

∂N

¶
V,T

= a0(v
2
0 − v2)− f

3.6
For this problem it is important to use the entropy expression with arbitrary

CV , instead of setting it to (3/2)kB . Write the adiabatic condition as
∆S = ∆S1 +∆S2 = 0, or
(N1 +N2)kB ln(Vf/Vi) + (N1CV 1 +N2CV 2) ln(Tf/Ti) = 0.
Thus, Tf/Ti = (Vi/Vf )

ς ,where ζ = kB(N1 +N2)/(N1CV 1 +N2CV 2).
This means TV ζ = constant. Putting T = PV/NkBT , whereN = N1+N2T,
we have

PV ξ = constant

where

ξ = ζ + 1 =
N1(CV 1 + kB) +N2(CV 2 + kB)

N1CV 1 +N2CV 2
=

n1CP1 + n2CP2

n1CV 1 + n2CV 2
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3.7
(a)
Since the disks are thin, we can assume that their temperatures always

remain uniform.
Let the final temperature be T .
The changes in temperatures are respectively ∆T1 = T −T1, ∆T2 = T −T2.
For simplicity write CP1 = C1, CP2 = C2.
The amounts of heat absorbed are respectively ∆Q1 = C1∆T1, ∆Q2 =

C2∆T2.
Since the system is isolated ∆Q1 +∆Q2 = 0. This gives

T =
C1T1 + C2T2
C1 + C2

(b)
Consider the instant when the two temperatures are T 02, T

0
1, (T

0
2 > T 01).

When an amount of heat dQ flows from 2 to 1, the entropy increase is
dS = (dQ/T 01)− (dQ/T 02).
We can express dQ in terms of the dT ’ through dQ = C1dT

0
1 = −C2dT 02.

Thus we can rewrite dS = C1(dT
0
1/T

0
1) + C2(dT

0
2/T

0
2).

∆S = C1

Z T

T1

dT 01
T 01

+ C2

Z T

T2

dT 02
T 02

= C1 ln
T

T1
+ C2 ln

T

T2

3.8
The relations are straightforward mappings from a PV system to a magnetic

system.

3.9
(a)
The desired expression are straightforward mappings of those for a PV sys-

tem.
(b)
The first relation is the condition that dA be an exact differential. The

second is obtained by using the equation of state M = κH/T .
(c)
The chain rule states (∂T/∂H)S(∂H/∂S)T (∂S/∂T )H = −1.
From (b) we have (∂H/∂S)T = −T 2/(κH).
By definition, the heat absorbed at constant H is given by TdS = CHdT .
Thus (∂S/∂T )H = CH/T.

3.10
(a)
The important property to verify is that at constant T the entropy decreases

as the magnetic field H increases.
(b)



15

Isothermal magnetization: dT = 0.
The heat absorbed is
dQ = CMdT −HdM = −HdM . Therefore

∆Q = −
Z H

0

HdM = −κH
2

2T0

(c)
Adiabatic cooling: dQ = 0.
From dQ = CMdT −HdM we obtain
dT = (H/CM ) dM =

¡
κ/aT 2

¢
MdM . Multiply both sides by T 2and inte-

grate:R T1
T0

T 2dT = (κ/a)
R 0
M
MdM.

This gives T 31 = T 30 − (κ/2a)M2, or

T 31 = T 30 −
κ3H2

2aT 20

This becomes negative when the magnetic field H is sufficiently large. However,
the equation becomes invalid long before that happens, for it is based on Curie’s
law, which is valid only for weak fields.
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Chapter 4

4.1
The system is in contact with a heat reservoir, but initially not in equilibrium

with it. Let the stages of the process be labeled A,B,C:. We first calculate the
heat absorbed ∆Q, and the entropy change ∆S of the system.

(A) Water cools from 20◦C to 0◦C.

∆Q = CP∆T = −10× 4180× 20 J = −8.36× 105 J.
∆S =

R
dQ/T = CP

R
dT/T = CP ln(Tf/Ti) = 41800 ln(273/293) = −2.96×

103J/deg.

(B) Solidification at 0◦C.

∆Q = −10× 3.34× 105 J =.−3.34× 106 J.
∆S = ∆Q/T = −3.34× 106/273 = −1.22× 104 J/deg.
(C) Ice cools from 0◦C to -10◦C.

∆Q = C 0P∆T = −10× 2090× 10 J = −2.09× 105 J.
∆S = C 0P ln(Tf/Ti) = 20900 ln(263/273) = −7.80× 102 J/deg.
Total heat absorbed by system: ∆Qsys = −4.39× 106J
Total entropy change of system: ∆Ssys = −1.39× 104 J/deg.
The reservoir has a fixed temperature T0 = −10◦C..
The total heat absorbed by reservoir equals that rejected by the system:
∆Qres = 4.39× 106J.
Entropy change of reservoir:
∆Sres = ∆Qres/T0 = 4.39× 106/263 = 1.67× 104 J/deg.

∆Suniverse = ∆Sres +∆Sres = 2.8× 103 J/deg

4.2
Let P0, T0 be the pressure and absolute temperature at the triple point. Let

L be the extensive latent heat (not specific latent heat.) Since the solid-gas

17
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transition can be made either via a direct path or a solid-liquid-gas path, we
must have

Lsublimation = Lmelt + Lvap

Vaporization: dP/dT ≈ Lvap/TV = PLvap/NkBT
2.

P = P0 exp

·
Lvap

NkBT0

µ
1− T0

T

¶¸

Melting: dP/dT = Lvap/T∆V.

P = P0 +
Lmelt
∆V

ln
T

T0

Sublimation: dP/dT ≈ P (Lvap + Lmelt)/NkBT
2.

P = P0 exp

·
Lvap + Lmelt

NkBT0

µ
1− T0

T

¶¸

4.3
dP/dT = c/T∆v = [1.44 J/(18− 20)cm3]T−1.
∴ dT/dP = −c0T , where c0 = 1.39 cm3/J.

4.4
(a)
At a given v > v0, the dashed line lies at a lower free energy than the

solid line. The latter represents a “stretched” that fills the whole volume. The
former represent a liquid drop at specific volume v0 that does not fill up the
entire volume. This is therefore the preferred state of the liquid. At v = v0 the
pressure is zero.
(b)
Now assume that the liquid coexists with its vapor, treated as an ideal gas.

We are in the transition region of a first-order phase transition. At the given
temperature, the liquid and gas have fixed densities, which must be consistent
with the requirement of equal pressure P and chemical potential µ. Denote
quantities for the liquid with subscript 1, and those for the vapor with subscript
2:

P1 = a0(v0 − v),
µ1 = a0(v

2
0 − v2)− f,

P2 = nkBT,
µ2 = kBT ln(nλ

3).
where P1, µ1 were obtained in Prob.3.5, and µ2 was given in Prob.3.2, with
λ =

p
2π~2/mkBT . Thus, the conditions determining v and n are

a0(v0 − v) = nkBT

a0(v
2
0 − v2)− f = kBT ln(nλ

3)


